【助成 41-21】

磁性単原子終端されたナノ構造体を用いた高輝度スピン偏極電子源の開発

研究者 三重大学大学院工学研究科 准教授 永井 滋一

〔研究の概要〕

電子スピンに関連した物理現象を電子デバイス等に応用するスピントロニクス分野は,高速,省電力デバイスの 開発技術として期待されている。スピントロニクス分野の進展には、ナノ領域での磁性体表面ダイナミクスの知見を 得る必要がある。そのプローブとしてスピン偏極電子源を搭載した顕微分析技術の進展は不可欠である。そこで本 研究では、磁性体で単原子終端されたナノピラミッド構造をもつ電界放出型電子源の基礎特性の評価を行った。 その結果、室温で最大偏極度60%の性能を持つ電子源を実現することができた。さらなる高輝度化を目的にナノ突 起構造体を有する下地タングステン陰極の開発に着手し、タングステンナノ突起構造体に起因する局在準位から の電子放出を明らかにした。

〔研究経過および成果〕

電子デバイスの高速省電力化を実現するスピントロ ニクス分野の進展には、ナノ領域での磁性体表面ダ イナミクスの知見を得る必要がある。そのプローブとし てスピン偏極電子源を搭載した顕微分析技術の進展 は不可欠である。現在、光電子型スピン偏極電子源 を搭載した低速電子顕微鏡が実現されているが、スピ ン偏極電子を励起するレーザー光の焦点径によって 光源サイズが制限されるため、空間分解能に課題が 残されている。そのため、本研究では、超高輝度スピ ン偏極電子ビーム放出を実現するための電界放出型 電子源を試みた。作製した磁性体(Co)終端された陰 極からの電界放出電子ビームの放出電流とスピン偏 極度を測定し、最適動作条件を検討した。

本研究では、ナノピラミッド構造を作製する基板となる陰極として Pt tip を用いた。電界イオン顕微鏡を観察しながら電界蒸発によって表面清浄化を施した。原子レベルで清浄な表面を確認した後、超高真空中で磁性体金属として Co を 7 ML 堆積させた。作製され

た Co/Pt tip 上にナノピラミッド構造を形成するために, その場で1000 K で加熱処理を施した。加熱時間に対 して,電界放出電子のスピン偏極度を測定した結果 を Fig. 1 に示す。この結果は,陰極の温度を室温とし て,全放出電流 3 nA における測定結果であり,蒸着 直後では、放出電子のスピン偏極は殆ど観測されな かったが,10 分間の加熱によって偏極度は 25%程度 まで増加した。加熱時間 60 分までは加熱時間にたい

Fig. 1. 加熱時間に対するスピン偏極度(陰極温 度:室温,全放出電流: 3nA).

してわずかに低下し,120分では13%まで大幅に低下 した。その要因として,加熱時間の増加によって,ナノ ピラミッド構造体表面の Co 原子が表面拡散あるいは Pt との合金化することで,電子放出サイトから減少し たためであると考えられる。Fig.2は加熱時間 60分お よび 120分の陰極において,放出電流に対するスピ ン偏極度を測定した結果である。放出電流が小さい ほどスピン偏極度が増大する傾向がみられ,特に加 熱時間 60分の陰極において,最大スピン偏極度 60% を達成している。。この値は,室温動作可能な電界放 出型スピン偏極電子源としては,研究代表者が報告 した Co₂MnGa 陰極に匹敵するものである。

Fig. 2. 放出電流に対する Co/Pt 陰極からの電界 放出電子のスピン偏極度.

ナノピラミッド構造だけで無く,ナノ突起構造体をベ ースにした磁性単原子終端された電子源の開発を進 めてきた。その第一段階として,これまでに実績があ るタングステン陰極に対して電界誘起酸素エッチング を施すことで,数 nm の先端曲率半径の陰極および 100nm程度の曲率半径の陰極上にナノ突起構造体を 形成し,これらの先端からの放出電子のエネルギー 分析を行った。その結果,局在準位からの電子放出 が生じることで、単色性に優れたが明らかになり、今 後磁性金属の蒸着による高輝度かつ高偏極度の電 子源開発を継続して進めている。

Fig. 3. 単原子終端したタングステン電界放出 陰極からの電界放出電子のエネルギースペク トル

〔発表論文〕

- 志摩 惇紀,岩田 達夫,永井 滋一,"電界誘起 酸素エッチングによって先鋭化された W 電界放 出陰極のエネルギー分布",第85回応用物理学 会秋季学術講演会,(新潟),2024.9.17.
- Junki Shima, Tatsuo Iwata, Shigekazu Nagai, "Energy distribution of W field emitters sharpened by the field-assisted oxygen etching", 15the International Symposium on Atomic Level Characterization for New Material and Devices, (Matsue), 2024. 11.9.